
APPLICATION SECURITY WEBINAR
PRESENTED BY THE TRINIDAD AND TOBAGO CYBER SECURITY INCIDENT RESPONSE TEAM (TT-CSIRT)

WHO ARE WE AND WHAT WE DO

 Unit under the Ministry of
National Security

 Established to serve both
government and non-
government organizations
(public and private sectors)

 Services accessible at no cost
– funded by the tax payers of
T&T

TTCSIRT’S SECURITY ASSURANCE SERVICES

 The TTCSIRT provides security assurance activities including:

 Static and Dynamic Application Testing

 Network and Application Penetration Testing

 Vulnerability Assessments

 As a reminder to MDAs, the TTCSIRT must assess all government
applications that require treasury approval to accept online
payments according to:

 The Electronic Funds Transfer (EFT) Financial Instructions for Public
Moneys Collected via the Credit Card Online Solution, 2020

 The Electronic Funds Transfer (EFT) Financial Instructions for Public
Moneys Collected via the Payment Service Provider Retail Payment
Network, 2022

APPLICATION SECURITY TRENDS

OWASP

• Educational publications &
Training

• Open Web Application Security
Projects
• OWASP Top 10, WSTG, ASVS,

SAMM and more!
• Enable developers to write

better software and verify their
work

OWASP’s Top 10 (2021)

1. Broken Access Control

2. Cryptographic Failures

3. Injection

4. Insecure Design

5. Security Misconfiguration

6. Vulnerable And Outdated Components

7. Identification And Authorization Failures

8. Software And Data Integrity Failures

9. Security Logging And Monitoring Failures

10. Server-side Request Forgery

LOCALLY OBSERVED APPLICATION SECURITY TRENDS

TTCSIRT’s Top 10

1. Vulnerable And Outdated Components

2. Identification And Authorization Failures

3. Broken Access Control

4. Security Misconfiguration

5. Insecure Design

6. Security Logging And Monitoring Failures

7. Software And Data Integrity Failures

8. Injection

9. Cryptographic Failures

10. Server-side Request Forgery

OWASP’s Top 10 (2021)

Broken Access Control

Cryptographic Failures

Injection

Insecure Design

Security Misconfiguration

Vulnerable And Outdated Components

Identification And Authorization Failures

Software And Data Integrity Failures

Security Logging And Monitoring Failures

Server-side Request Forgery

BUILDING SECURITY INTO SOFTWARE DEVELOPMENT

 Establish development policies, standards and guidelines

 Data Classification & Handling, Compliance & Regulations, Coding Standard, 3rd Party Component Management

 Consider security at every phase of the SDLC

 Planning – identify potential security risks and requirements, define security goals

 Design – considerations for secure architecture, least privilege, defence in depth, resiliency

 Coding – Make use of secure coding standards, best practices, validation, encryption, code reviews, error handling

 Testing – Unit testing, configuration testing, vulnerability scanning, SAST & DAST, penetration testing

 Deployment – secure production environment, secure configurations on application, host and network, monitoring,
IRP

 Maintenance – continuous monitoring, patch management, periodic security assessments.

 Threat Modelling

 Developer security awareness and training

 Leverage the Software Assurance Maturity Model (SAMM)

SOFTWARE ASSURANCE MATURITY MODEL
https://owaspsamm.org/

SAMM: THREAT ASSESSMENT
https://owaspsamm.org/model/design/threat-assessment/

Maturity
Level

Description Application Risk Profile Threat Modelling

1 Best-effort identification
of high-level threats to
the organization and
individual projects.

A basic assessment of the
application risk is performed to
understand likelihood and impact
of an attack.

Perform best-effort, risk-based threat
modeling using brainstorming and
existing diagrams with simple threat
checklists.

2 Standardization and
enterprise-wide analysis
of software-related
threats within the
organization.

Understand the risk for all
applications in the organization by
centralizing the risk profile
inventory for stakeholders.

Standardize threat modeling training,
processes, and tools to scale across the
organization.

3 Proactive improvement
of threat coverage
throughout the
organization.

Periodically review application risk
profiles at regular intervals to
ensure accuracy and reflect current
state.

Continuously optimization and
automation of your threat modeling
methodology.

SAMM: THREAT ASSESSMENT – APPLICATION RISK PROFILE
https://owaspsamm.org/model/design/threat-assessment/stream-a/

• Describes how to assess and achieve the 3 Maturity Levels
• Level 1: Ability to classify applications according to risk
• Level 2: Solid understanding of the risk level of your

application portfolio
• Level 3: Timely update of the application classification in case

of changes

• Questions to also consider:
- Are there any specific compliance requirements for the
application?
- What is the sensitivity of the data?
- What is the reputation impact of the application to your
organization?
- What is the reputation impact of the application to your
customers using this application?
- What is the security knowledge and skills of the developers
working on this application?
- Can external users register and use the application?
- What are the availability requirements?

SAMM ASSESSMENT
https://owaspsamm.org/assessment/

 SAMM Assessment can be completed:

 Offline on a spreadsheet

 SAMM Toolbox, a Microsoft Excel Toolbox and a Google
Spreadsheet Toolbox

 A localhost web application

 https://github.com/owaspsamm/sammwise

 An online website (SAMMY)

 https://sammy.codific.com/

SAMMY Online Assessment Tool

THE FIVE W’S OF TESTING

 What is Testing?

• A procedure intended to establish the quality, performance,
or reliability of something, especially before it is taken into
widespread use

• There are several criteria to test against based on the
application

 Why Perform Testing?

• To discover vulnerabilities that may cause loss of “CIA”

• To determine the gap between existing practices and
industry best practices

• To understand the magnitude of resources required to test
and maintain software, or to prepare for an audit.

 When to Test?

• Throughout the Software Development Life Cycle – include
security in each of its phases since there is an increased
cost to fix security issues later on.

 Where to Test?

• People – to ensure that there is adequate education and
awareness;

• Process – to ensure that there are adequate policies and
standards and that people know how to follow these
policies;

• Technology – to ensure that the process has been effective
in its implementation.

THE FIVE W’S OF TESTING

Who should Test?

 Most importantly, YOU, the developer or internal
testing team.

 TT-CSIRT – for applications that facilitate payments
online as mandated by the Treasury Under
Regulation 31 Of The Exchequer And Audit
(Electronic Funds Transfer) Regulations, 2015.

 Other non-payment application assessments can also
be requested by the TTCSIRT.

 Third party assessors – there are other private
companies that offer services to ensure security.

IMPORTANCE OF INTERNAL TESTING

 Developers and internal teams have a greater
understanding about the application and therefore can
quicker identify relevant concerns

 Easier access to proper documentation without the
concern of releasing sensitive information to 3rd party
assessors; architecture, source code, data-flow diagrams,
use cases, etc.

 Access to source code allows increased visibility for
detecting bugs or issues which may not be obvious when
creating test cases.

 Security can be integrated into each phase of the SDLC to
allow earlier detection and resolution

 Establish repeatable tests which can be used to verify
application upon change or on future developments

SOFTWARE DEVELOPMENT SECURITY TESTING FRAMEWORK

Phase 1: Before
Development

Begins

Phase 2: During
Definition and

Design
Phase 3: During
Development Phase 4: During

Deployment Phase 5 During
Maintenance

and Operations

 The software development security testing framework does not specify the use of any particular development
methodology

 The framework comprises of techniques and tasks that are appropriate at various phases of the software
development life cycle (SDLC).

 The framework facilitates testing in the early cycles of application development, such as during definition, design, and
development

 Testing during the definition, design, development and maintenance phases saves on the costly strategy of waiting
until code is completely built.

PHASE 1: BEFORE DEVELOPMENT BEGINS

 Define a SDLC

• Before application development starts, a SDLC must be defined where security is inherent at each stage.

 Review Policies and Standards

• Ensure that there are appropriate policies, standards, and documentation in place to give development teams
guidelines and policies that they can follow.

• For example, PCI-DSS when dealing with credit card information, application’s acceptable use policy, privacy
policy, ISO, secure coding standards for specific programming languages.

• Document common and predictable issues so there will be fewer decisions that need to be made during the
development process.

 Develop Measurement and Metrics Criteria and Ensure Traceability

• Define criteria that need to be measured to provides visibility into defects in both the process and product.

• For example, consider what interaction on the application needs to be logged, successful/ unsuccessful logins,
traffic analysis, incidents, violations, etc.

PHASE 2: DURING DEFINITION AND DESIGN

 Review Security Requirements

• Define how an application works from a security perspective and test the assumptions made in the
requirements to see if there are any gaps in the requirements definitions.

• For example: If there is a security requirement that states that users must be registered before they can get
access to an informational section of a website, does this mean that the user must be registered with the
system or should the user be authenticated?

• Consider looking at security mechanisms such as:

• User
Management

• Authentication • Authorization • Data
Confidentiality

• Integrity

• Accountability • Session
Management

• Transport
Security

• Tiered System
Segregation

• Legislative and
Standards
Compliance

PHASE 2: DURING DEFINITION AND DESIGN (CONT’D)

 Review Design and Architecture

• Applications should have a documented design and architecture which include items such as models and
textual documents. This ensures that the design and architecture includes security functions as defined in the
requirements. If flaws are identified at this stage, the design can be easily changed to mitigate the flaws.

• For example, having a firewall illustrated in the network design or a verification process drawn on a flowchart

 Create and Review UML Models

• These models describe how the application works in an easy to follow method and can be distributed to
stakeholders who are required to understand processes without reviewing source code or processes in dept.

 Create and Review Threat Models

• Develop realistic threat scenarios to conduct a threat modeling exercise.

• Analyze the design and architecture to ensure that these threats have been mitigated, accepted by the
business, or assigned to a third party

• If threats are identified and there is no mitigation strategies, revisiting the design and architecture would be
necessary

Phase 2: During Definition and Design (Cont’d)

PHASE 3: DURING DEVELOPMENT

Development is the implementation of a design. However, many design decisions are made during code development
since these are often smaller decisions that were either too detailed to be described in the design, or issues where no
policy or standard guidance was offered. To ensure that the developers’ decisions were inline with the business
interests, the following steps can be done:

 Code Walkthrough

• A code walkthrough is a high-level look at the code during where the developers can explain the logic and flow
of the implemented code.

• The developers would conduct a code walkthrough with the necessary stakeholders; testers, senior developers
or managers.

• Providing this walkthrough may uncover issues in terms of process flow or business logic flaws.

 Code Reviews

• Static code reviews validate the code against a set of checklists, including: Business requirements for CIA,
OWASP WSTG or Top 10 checklist, language or framework specific best practices, industry specific checklists.

PHASE 3: DURING DEVELOPMENT (CONT’D)

 Unit Testing
• The main objective of security tests is to validate that code is being developed in compliance with

secure coding standards requirements

• Developers’ own coding artifacts (such as functions, methods, classes, APIs, and libraries) need to be
functionally validated before being integrated into the application build.

• Unit tests should be defined for use and misuse cases to security test functions, methods and
classes.

• Security test suite might include security test cases to validate both positive and negative
requirements for security controls such as: identity, authentication & access control, Input validation
& encoding, Encryption, User and session management, Error and exception handling, Auditing and
logging

• At the component level, security unit tests can validate positive assertions as well as negative
assertions, such as errors and exception handling should be caught without leaving the system in an
insecure state or state of constant processing.

PHASE 4: DURING DEPLOYMENT

 Application Penetration Testing

• Penetration testing the application after it has been deployed provides an additional check to ensure that
nothing has been missed.

• The deployed application may be within a development environment which does not mirror the production
environment in terms of infrastructure, software or policy & procedures. As a result, the production
environment must be tested to ensure that there are no security gaps in the final application.

 Configuration Management Testing

• It is important to review configuration aspects to ensure changed default setting that may be vulnerable to
exploitation.

• For example, change default admin passwords, certificates, configurations with low security settings.

PHASE 5: DURING MAINTENANCE AND OPERATIONS

 Conduct Operational Management Reviews

• Implement and follow a process which details how the operational side of the application and infrastructure is
managed

• This would include such as: checking that the load the systems experience doesn’t exceed its capacity,
checking uptime, faults/errors which may have caused an outage and similar checks which monitor operations
disturbance. IAM changes. Any findings should then be followed up with accordingly

 Conduct Periodic Health Checks

• Ensure that no new security risks have been introduced to either the application or infrastructure

• Periodically check for software updates from vendors and examine the changelogs for information on
vulnerabilities or bugs which may affect your product.

• Subscribe to threat feeds which relate to your systems in use

 Ensure Change Verification

• Changes should go through a testing and approval process to ensure that the change doesn’t degrade the
security of the system or introduce any interoperability issues.

SDLC Testing Workflow Overview

APPLICATION SECURITY TESTING

OWASP APPLICATION SECURITY VERIFICATION
STANDARD (ASVS)

 The OWASP Application Security Verification Standard (ASVS)
Project provides a basis for testing web application technical security
controls and also provides developers with a list of requirements for
secure development.

 Used as a metric - Provide application developers and application
owners with a yardstick with which to assess the degree of trust that
can be placed in their Web applications,

 Used as guidance - Provide guidance to security control
developers as to what to build into security controls in order to
satisfy application security requirements, and

 Used during procurement - Provide a basis for specifying
application security verification requirements in contracts.

URL: https://owasp.org/www-project-application-security-verification-
standard/

OWASP APPLICATION SECURITY VERIFICATION
STANDARD (ASVS)

1. Architecture, Design, And
Threat Modeling

2. Authentication

3. Session Management

4. Access Control

5. Validation, Sanitization
And Encoding

6. Stored Cryptography

7. Error Handling And
Logging

8. Data Protection

9. Communications

10. Malicious Code

11. Business Logic

12. Files And Resources

13. API And Web Services

14. Configuration

OWASP ASVS: FILE AND RESOURCES

Control Objectives

 File Upload

 File Integrity

 File Execution

 File Storage

 File Download

 SSRF Protection

OWASP ASVS: ACCESS CONTROL

Control Objectives

 General Access
Control Design

 Operational Level
Access Control

 Other Access
Control
Considerations

OWASP WEB SECURITY TESTING GUIDE (WSTG)

 The Web Security Testing Guide (WSTG) Project produces the
premier cybersecurity testing resource for web application developers
and security professionals.

 The WSTG is a comprehensive guide to testing the security of web
applications and web services. Created by the collaborative efforts of
cybersecurity professionals and dedicated volunteers, the WSTG
provides a framework of best practices used by penetration testers
and organizations all over the world.

 The TT-CSIRT has adopted the use of this guide and it is fundamental
in our approach to assessing web applications.

URLs

Web view: https://owasp.org/www-project-web-security-testing-guide/stable/

PDF Download: https://github.com/OWASP/wstg/releases/download/v4.2/wstg-
v4.2.pdf

TESTING STRATEGY

 While the SDLC is in progress, testing or threat modeling
can be done

 You know what you need to test based on the Application
Security Verification Standard

 You can effectively go through the test cases specified in
the OWASP WSTG to verify that it is secure.

 OWASP WSTG contains 11 categories with a total of 109
test cases for web application security testing.

OWASP’S WSTG CATEGORIES

OWASP WSTG contains 12 categories
covering over100 test cases.

1. Information Gathering

2. Configuration and Deployment
Management Testing

3. Identity Management Testing

4. Authentication Testing

5. Authorization Testing

6. Session Management Testing

7. Input Validation Testing

8. Error Handling

9. Cryptography

10. Business Logic Testing

11. Client-side Testing

12. API Testing

TESTING

 Testing Techniques

• Passive Testing

• Active Testing

• Manual Inspections & Reviews

• Threat Modeling

• Code Review

• Penetration Testing

PASSIVE TESTING

Goals

 To understand the application as a user

 Perform information gathering

 Observe points of entry or critical sections of the application

 Forms, URLs, features, functions, etc.

For example:

 A tester may find a page at the following URL:
https://www.example.com/login/auth_form

 This may indicate an authentication form where the application
requests a username and password.

 URL parameters also represent access points to the application:
https://www.example.com/appx?uid=123&permission=admin

ACTIVE TESTING

Goals

 Active testing aims to probe and evaluate the application actively,
simulating potential attacks and identifying vulnerabilities.

 Evaluate security controls, assess attack vectors, pinpoint gaps and
weaknesses.

 It involves interacting with the application to assess its security
controls, including authentication, authorization, input, error handling
and the other categories from OWASP’s WSTG

For example:

 In active testing, a tester may attempt to exploit an authentication
form by attempting SQL injection or XSS.

 Submitting malicious payloads and attempting to create a loss of CIA

THREAT MODELING

 Threat Modeling
• A type of risk assessment for applications that all applications undergo.

• Helps system designers think about the security threats that their systems and
applications might face.

• This technique involves:

• Decomposing the application – use a process of manual inspection to understand how the
application works, its assets, functionality, and connectivity.

• Defining and classifying the assets – classify the assets into tangible and intangible assets
and rank them according to business importance.

• Exploring potential vulnerabilities - whether technical, operational, or managerial.

• Exploring potential threats – develop a realistic view of potential attack vectors from an
attacker’s perspective by using threat scenarios or attack trees.

• Creating mitigation strategies – develop mitigating controls for each of the threats deemed
to be realistic.

THREAT MODELING

 Threat Modeling

Advantages
• Practical attacker view of the system
• Flexible
• Early in the SDLC
Disadvantages
• Good threat models don’t automatically

mean good software

MANUAL INSPECTION & REVIEW

 Manual Inspections & Reviews
• Manual inspections are human reviews.

• It tests the security implications of people, policies, and
processes.

• Manual inspections can also include inspection of
documentation, secure coding policies, security
requirements, and architectural designs.

• Manual inspection and reviews are conducted by analyzing
documentation or performing interviews with the designers
or system owners.

• Manual reviews are particularly good for testing whether
people understand the security process, have been made
aware of policy, and have the appropriate skills to design or
implement secure applications.

Advantages
• Requires no supporting

technology
• Can be applied to a variety of

situations
• Flexible
• Promotes teamwork
• Early in the SDLC

Disadvantages
• Can be time-consuming
• Supporting material not always

available
• Requires significant human

thought and skill to be effective

SOURCE CODE REVIEW

 Source Code Review
• This is the process of manually checking the source

code of a web application for security issues.

• “if you want to know what’s really going on, go
straight to the source.”

• Many unintentional but significant security problems
are extremely difficult to discover with other forms of
analysis or testing, such as penetration testing.

• This remove the guess work of black-box testing.

• Source code reviews can highlight concurrency
problems, flawed business logic, access control
problems, and cryptographic weaknesses, backdoors,
Trojans, Easter eggs, time bombs, logic bombs, and
other forms of malicious code.

Advantages
• Completeness and effectiveness
• Accuracy
• Fast (for competent reviewers)
Disadvantages
• Requires highly skilled security

aware developers
• Can miss issues in compiled

libraries
• Cannot detect runtime errors

easily
• The source code actually

deployed might differ from the
one being analyzed

SAST & DAST

 SAST - Static Application Security Testing:

 Overview: SAST is a white-box testing technique that
examines the source code, bytecode, or binary code of
an application for vulnerabilities without executing it.

 Advantages:

 Early Detection: Identifies vulnerabilities during the
development phase.

 Source Code Analysis: Analyzes source code for potential
security issues.

 Reduces Risk: Mitigates security threats before
deployment.

 Challenges:

 False Positives: May generate false alarms.

 Limited Runtime Data: Lacks insight into runtime behavior.

 DAST - Dynamic Application Security Testing:

 Overview: DAST is a black-box testing technique
that assesses an application's security by simulating
real-world attacks during runtime.

 Advantages:

 Real-World Scenarios: Mimics how an actual attacker
would interact with the application.

 Accurate Testing: Identifies vulnerabilities in the deployed
application.

 No Access to Source Code: Requires no access to
source code or internal structures.

 Challenges:

 Limited Early Detection: Typically identifies vulnerabilities
post-development.

 May Not Cover All Code Paths: May miss vulnerabilities
in rarely used functions.

PENETRATION TESTING

 Penetration Testing

• Penetration testing is testing a system or application to find
security vulnerabilities, without knowing the inner workings
of the target itself

• Penetration testing has proven to be effective in network
security and applications can be used as a point of entry.

• It can be effective in finding, and then exploiting, known
vulnerabilities in specific web technologies

Advantages
• Can be fast
• Requires a relatively lower skill-

set than source code review
• Tests the code that is being

exposed

Disadvantages
• Too late in the SDLC
• Front-impact testing only

WHICH TESTING TECHNIQUE TO USE?

 A combination of the techniques should be used to
cover testing in all phases of the SDLC

WALK BEFORE YOU RUN

 Conducting assessments based on OWASP’s
Software Assurance Maturity Model, Application
Security Verification Standard and Web Security
Testing Guide can be overwhelming or challenging

 Challenging based on lacking resources (staff, tools,
expert knowledge, etc.)

 Aim to cover OWASP’s Top 10 at minimum.

#1: BROKEN ACCESS CONTROL

What is Access Control?

 Access control enforces policy such that
users cannot act outside of their intended
permissions.

 Access control is only effective in trusted
server-side code or server-less API, where
the attacker cannot modify the access
control check or metadata.

 Failures typically lead to unauthorized
information disclosure, modification, or
destruction of all data or performing a
business function outside the user's limits.

Prevention

 Focus on manual testing

 Have well defined business rules that
translate into access control rules

 Role-based access controls matrix

 Implement default deny – except for public
resources

 Disable web server directory listing

 Log and alert on access events

#2 CRYPTOGRAPHIC FAILURES

Dealing with Cryptographic Failures

 The first thing is to determine the protection
needs of data in transit and at rest.

 For example, passwords, credit card numbers,
health records, personal information, and
business secrets require extra protection,

 Does any data fall under privacy laws, e.g., EU's
General Data Protection Regulation (GDPR),
or regulations, e.g., financial data protection
such as PCI Data Security Standard (PCI DSS).

 Is any data transmitted in clear text?

 Is the received server certificate and the trust
chain properly validated?

 Encrypt all sensitive data at rest and in transit.

 Use up-to-date and strong standard algorithms,
protocols, and keys

 Encrypt all data in transit with secure protocols
such as TLS 1.3

 Enforce encryption using directives like HTTP
Strict Transport Security (HSTS).

 Disable caching for response that contain
sensitive data.

 Do not use legacy protocols such as FTP and
SMTP for transporting sensitive data.

 Store passwords using strong adaptive and
salted hashing functions such as Argon2, scrypt,
bcrypt or PBKDF2. Avoid MD5 and SHA1!

#3 INJECTION

Injection can occur when:

 User-supplied data is not validated,
filtered, or sanitized by the application.

 Dynamic queries or non-parameterized
calls without context-aware escaping are
used directly in the interpreter.

 Maliciously supplied data is used within
search parameters to extract additional,
sensitive records or to bypass access
controls.

 Classic SQLi payload: ‘ or 1=1; -- -

Prevention:

 Perform proper input validation. Positive
or "allow list" input validation

 Use a safe API which avoids the use of the
interpreter entirely and provides a
parameterized interface.

 If a parameterized API is not available,
encode/escape special characters in input
and output using the specific escape
syntax for that interpreter.

 Validate All User Supplied Input

#4 INSECURE DESIGN

 Secure design is a culture and methodology that constantly evaluates threats and
ensures that code is robustly designed and tested to prevent known attack
methods.

 Threat modeling should be integrated into refinement sessions (or similar
activities); look for changes in data flows and access control or other security
controls.

 In the user story development determine the correct flow and failure states,
ensure they are well understood and agreed upon by responsible and impacted
parties.

 Analyze assumptions and conditions for expected and failure flows, ensure they
are still accurate and desirable.

 Determine how to validate the assumptions and enforce conditions needed for
proper behaviors.

 Secure design is neither an add-on nor a tool that you can add to software

#4 PREVENTING INSECURE DESIGN

 Establish and use a secure development lifecycle with AppSec professionals to
help evaluate and design security and privacy-related controls

 Establish and use a library of secure design patterns or security approved
components

 Use threat modeling for critical authentication, access control, business logic, and
key flows

 Integrate plausibility checks at each tier of your application (from frontend to
backend)

 Write unit and integration tests to validate that all critical flows are resistant to
the threat model. Compile use-cases and misuse-cases for each tier of your
application.

 Segregate layers on the system and network layers depending on the exposure
and protection needs

 Limit resource consumption by user or service

#5 SECURITY MISCONFIGURATION

Prevention:

 Follow a hardening process and establish a secure
base line. CIS benchmarks provide resources for
most applications and infrastructures.

 This process can minimize the effort required to
set up a new secure environment.

 Remove or do not install unused features and
frameworks.

 Review and update the configurations appropriate
to all security notes, updates, and patches as part of
the patch management process

 Segment application architecture to reduce the
impact of a breach.

 Sending security directives to clients, e.g., Security
Headers.

The application might be vulnerable if the
application is:

 Missing appropriate security hardening or
improperly configured permissions.

 Unnecessary features are enabled or installed

 Default accounts and their passwords are still
enabled and unchanged.

 Error handling reveals stack traces or other
overly informative error messages

 Security features are disabled or not
configured securely.

 The server does not send security headers or
directives, or they are not set to secure values.

#6 VULNERABLE AND OUTDATED COMPONENTS

You are likely vulnerable:

 If you do not know the versions of all components you
use

 If the software is vulnerable, unsupported, or out of date.

 If you do not scan for vulnerabilities regularly and
subscribe to security bulletins related to the components
you use.

 If you do not fix or upgrade the underlying platform,
frameworks, and dependencies in a risk-based, timely
fashion.

 If software developers do not test the compatibility of
updated, upgraded, or patched libraries.

Prevention:

 Remove unnecessary
components

 Maintain an inventory of assets
and their versions

 Monitor assets for
vulnerabilities

 Obtain software from trusted
sources only

 Have a plan that includes
prioritization of critical security
patches

#7 IDENTIFICATION AND AUTHENTICATION FAILURES

There may be authentication weaknesses if the application:

 Permits automated attacks such as credential stuffing,
brute force and others

 Permits default, weak, or well-known passwords, such as
"Password1" or "admin/admin".

 Uses weak or ineffective credential recovery and forgot-
password processes, such as "knowledge-based answers,"
which cannot be made safe.

 Uses plain text, encrypted, or weakly hashed passwords
data stores

 Has missing or ineffective multi-factor authentication.

 Exposes session identifier in the URL.

 Reuse session identifier after successful login.

 Does not correctly invalidate Session IDs.

Prevention:

 implement multi-factor authentication

 Do not use default credentials, particularly for
admin users.

 Implement weak password checks,

 Align password length, complexity, and rotation
policies with modern password policies.

 Ensure registration and credential recovery, are
hardened against account enumeration attacks.

 Limit or increasingly delay failed login attempts,
but be careful not to create a denial of service
scenario.

 Log all failures and alert administrators when
attacks are detected.

 Use server side built-in session management

#8 SOFTWARE AND DATA INTEGRITY FAILURES

Software and data integrity failures relate to

 Code and infrastructure that does not protect
against integrity violations.

 An insecure CI/CD pipeline can introduce the
potential for unauthorized access, malicious code,
or system compromise.

 Auto-updates are downloaded without sufficient
integrity verification and applied to the previously
trusted application.

 Attackers could potentially upload their own
updates to be distributed and run on all
installations.

 Another issue is insecure deserialization where
objects or data are encoded or serialized into a
structure that an attacker can see and modify.

Prevention:

 Use digital signatures or similar mechanisms to
verify the software or data is from the expected
source and has not been altered.

 Ensure libraries and dependencies, such as npm
or Maven, are consuming trusted repositories.

 Ensure that a software supply chain components
do not contain known vulnerabilities

 Have a review process for code and configuration
changes to minimize the chance that malicious
code or configuration.

 Ensure that unsigned or unencrypted serialized
data is not sent to untrusted clients without
some form of integrity check or digital signature
to detect tampering or replay of the serialized
data

#9 SECURITY LOGGING AND MONITORING FAILURES

Insufficient logging, detection, monitoring, and active
response occurs any time:

 Auditable events, such as logins, failed logins, and
high-value transactions, are not logged.

 Warnings and errors generate no, inadequate, or
unclear log messages.

 Logs of applications and APIs are not monitored
for suspicious activity.

 Logs are only stored locally.

 Appropriate alerting thresholds and response
escalation processes are not in place or effective.

 Penetration testing and scans by security testing
tools (such as OWASP ZAP) do not trigger alerts.

 The application cannot detect, escalate, or alert
for active attacks in real-time or near real-time.

Prevention

 Ensure all login, access control, and server-side input
validation failures can be logged with sufficient user
context to identify suspicious or malicious accounts and
held for enough time to allow delayed forensic analysis.

 Ensure that logs are generated in a format that log
management solutions can easily consume.

 Ensure log data is encoded correctly to prevent injections
or attacks on the logging or monitoring systems.

 Ensure high-value transactions have an audit trail with
integrity controls to prevent tampering or deletion, such as
append-only database tables or similar.

 DevSecOps teams should establish effective monitoring
and alerting such that suspicious activities are detected and
responded to quickly.

 Establish or adopt an incident response and recovery plan,
such as National Institute of Standards and Technology
(NIST) 800-61r2 or later.

#10 SERVER-SIDE REQUEST FORGERY

 SSRF flaws occur whenever a web application is
fetching a remote resource without validating the
user-supplied URL.

 It allows an attacker to coerce the application to
send a crafted request to an unexpected destination,
even when protected by a firewall, VPN, or another
type of network access control list (ACL).

 As modern web applications provide end-users with
convenient features, fetching a URL becomes a
common scenario.

 Port scan internal servers – If the network
architecture is unsegmented, attackers can map out
internal networks and exploit or abuse internal
services

 Sensitive data exposure – Attackers can access local
files or internal services to gain sensitive information
such as file:///etc/passwd

Prevention

From Network layer

 Segment remote resource access functionality in
separate networks to reduce the impact of SSRF

 Enforce “deny by default” firewall policies or
network access control rules to block all but
essential intranet traffic.

From Application layer:

 Sanitize and validate all client-supplied input data

 Enforce the URL schema, port, and destination
with a positive allow list

 Do not send raw responses to clients

 Disable HTTP redirections

WHAT NEXT?

 Start testing your own applications!

 Use the knowledge you’ve gained for your next
development project

 Completing a full OWASP based assessment can be
overwhelming but TTCSIRT is here to help

 Use tools like vulnerability scanners, Zed Attack Proxy
(ZAP), OpenVAS, Code scanners (GitHub’s CodeQL,
Snyk, etc)

 Remember automated scans are not always accurate and
lacks context. Manual testing fills those gaps

TTCSIRT ASSISTANCE

 We encourage all Trinidad and Tobago Ministries,
Divisions and Agencies to utilize our security assurance
services.

 Other organization within Trinidad and Tobago may also
access our services based on available resources

 Engagements can be initiated by emailing
contacts@ttcsirt.gov.tt

